Cookies policy

Similar to other websites, our Website uses a technology called “cookies” and web server logs to collect information about how our Website is used.

Cookies

Our Website uses cookies to distinguish you from other users of our Website. This helps us to provide you with a good experience when you browse our Website and also allows us to improve our site.

We use both first party and third party cookies. That is, both us and third party companies set cookies through this Website.

Analytics

We use “analytical” cookies which, in conjunction with our web server’s log files, allow us to calculate the aggregate number of people visiting our Website and which parts of the website are most popular. This helps us gather feedback so that we can improve our Website and better serve our users and members.

Our analytics cookies include Google Analytics. To opt out of Google Analytics, please click here or to find out more information about the Google Analytics security and privacy principles please click here.

Targeting

We use Remarketing with Google Analytics to advertise online and make ads more relevant (“Remarketing”). Remarketing cookies will be used by third parties (including Google) to show our ads on websites other than our own.

Both us and third parties (including Google) will also use Remarketing cookies – both first party (such as Google Analytics) and third party (such as DoubleClick) – to serve more relevant ads to users based on such users’ past visits to our website, whether those users are on our Website or on other websites.

To opt out of Remarketing or to control your ad preferences, please click here. Remarketing cookies will expire 90 days from the time that the cookie is set or updated (whichever is the later).

Personalisation

We also use personalisation cookies to build profiles relating to you and other visitors (where we have received consent) so that we can direct more relevant content to you based on your use of our Website. Such personalisation uses cookies to recognise visitors returning to our Website so that relevant content can be directed based on previous visits.

We do not generally store any personal data that you provided to us in your cookies.

We use ‘session’ cookies which enable you to carry information across pages of our Website and avoid having to re-enter information. Session cookies enable us to compile statistics that help us to understand how the Website is being used and to improve its structure.

We use ‘persistent’ cookies which are cookies that remain in the cookies file of your browser for longer and help us to recognise you as a unique visitor to the Website, tailoring the content of certain areas of the Website to offer you content that match your preferred interests.

On some of our web pages third parties may also set their own cookies (for example when you click social media sharing buttons or view embedded videos hosted on another website). We cannot access the data stored in any such cookies (nor can such third parties access our cookies).

By using our Website, you are deemed to consent to our use of the cookies described above.

You can refuse to accept cookies by activating the setting on your browser which allows you to refuse the setting of cookies (see below for further details), or use the links provided above. Please note that if you use your browser settings to block all cookies (including essential cookies) you may not be able to access all or parts of our site.

You may also delete cookies at any time by going to the browsing settings on your web browser.

Refusing Cookies – Browser Settings

You can also refuse to accept all or some cookies by amending the settings on your web browser.

For details about how to adjust your cookie settings in the following browsers, please visit the relevant link:

×
Análisis termográfico de edificios

 

El uso de la termografía infrarroja comMapaEnergeticoo técnica sobradamente provada para la inspección de edificios y localización de patologías como fugas de aire, humedades, etc. Nos permite realizar un examen visual “in-situ” de calidad de los objetos de estudio gracias a la posibilidad de visualizar en tiempo real los resultados pudiendo detectar sin dificultad los desperfectos o elementos característicos de estos. Estas técnicas de medición cualitativa nos proporcionan la posibilidad de realizar inspecciones rápidas y eficaces sin contacto directo con el objeto y de forma no destructiva, lo que disminuye tanto el riesgo de incidentes para los operarios como los daños producidos en los propios objetos de estudio ocasionados por otras técnicas intrusivas. Además, también se ha demostrado la utilidad de la termografía infrarroja como técnica puramente de medida a través de su utilización para el cálculo de propiedades termofísicas de materiales tales como difusividad y transmitancia térmica.

En el caso de termografía cualitativa, las publicaciones existentes tratan de estudios realizados in-situ, principalmente en edificios históricos o elementos del patrimonio cultural, mientras que los estudios cualitativos se realizan, en la mayor parte de los casos, en laboratorios sobre muestras de tamaño limitado. En aquellos casos en los que se han realizado estudios termográficos cuantitativos sobre edificios in-situ, los valores de temperatura son empleados con el objetivo de obtener propiedades termofísicas (conductancia térmica) reales del cerramiento, sin embargo su distribución espacial no es considerada.

Conjugar ambas aplicaciones permitirá la automatización del cálculo de pérdidas de calor a partir de las temperaturas medidas con una cámara termográfica. De este modo, no solo se usa la termografía para representar el estado de la pared, sino que también se usan los valores de temperatura contenidos en la termografía para la extracción de parámetros métricos del edificio en estudio, por lo que la hibridación de la información termográfica con el material cartográfico de precisión permitiría extraer la geometría real del objeto de estudio con textura termográfica, pudiendo así realizar mediciones precisas de los elementos de interés directamente sobre el resultado obtenido.

 

20140220-usal-ensmart-panoramica-728

 

Estudios como el publicado por EuroACE en 2010 colocan la mejora de la eficiencia energética en edificación en cabeza de las acciones necesarias para la reducción de emisiones de gases del efecto invernadero y gasto energético, así como para servir de empuje a la generación de empleo. Especial es el caso del parque de edificios ya construidos, la mayoría procedente de los años 1940-80, con normativa inexistente y recursos escasos. En ellos las obras de rehabilitación energética pueden suponer un ahorro de hasta el 75% en consumo de energía. En España existen 13 millones de viviendas susceptibles de intervención, cuya rehabilitación energética supondría una reducción de las emisiones del sector del 34% con respecto al año 2001.

×
Building thermographic analysis

 

 

The use of infraMapaEnergeticored thermography as a widely tested technique for building inspection and location of pathologies such as air leakage and moisture allows the performance of  quality “in-situ” visual examination of the objects under study due to the possibility of obtaining real-time results, being able to detect without difficulty damages or material characteristics. This qualitative measurement technique provides the capability of doing quick, effective and non-destructive inspection without direct contact with the object under study, decreasing the risk of incidents to operators and the damage of the objects comparing with other intrusive techniques. Furthermore, the utility of infrared thermography as a measurement technique has been proved by its use for the determination of the thermophysical properties of materials such as diffusivity and thermal transmittance.

In the qualitative approach, some authors have performed in-situ studies, mainly in historical buildings or cultural heritage elements, whereas quantitative studies are performed mainly in laboratories with limited size samples. In those cases where quantitative thermography studies were performed in-situ, temperature values were employed in order to obtain the real thermophysical properties (thermal conductance) of the building envelope, but their spatial distribution is not considered.

Combine both applications will enable the automation of the heat loss computation from the measured temperatures with a thermographic camera. Thus, the thermography is not only used to represent the state of the wall, but also temperature values represented on the thermography for extracting the metric parameters of the study object so the hybridization of the thermographic information with precise cartographic material would  allow to extract the actual geometry of the object of study with thermal texture, being able to make accurate measurements of the elements of interest directly on the obtained results.

 

20140220-usal-ensmart-panoramica-728

 

Studies such as the one published by EuroACE in 2010, places improved energy efficiency in building construction at the top of the list of actions that need to be taken to reduce greenhouse gases and energy costs, in addition to acting as a stimulus to generate employment. In particular is the case of existing buildings stock, most of which dates back to the period 1940-80, constructed using non-existent standards and scarce resources. Here, energy refurbishment works could represent a saving of up to 75% in energy consumption. In Spain there are 13 million homes that could be the subject of intervention, where energy refurbishment could result in a reduction in sector emissions of 34% compared to 2001.

 

×
×
Ventana modal ingles
×
Ventana modal español
×
Mobile Lasre System (MLS) applied to urban tree inventory

In urbanized Western Europe trees are considered an important component of the built-up environment. This also means that there is an increasing demand for tree inventories. Laser mobile mapping systems provide an efficient and accurate way to sample the 3D road surrounding including notable roadside trees. In this research line, a processing chain aiming at the extraction of tree locations and tree sizes from laser mobile mapping data is reached.

 

  • Vegetation extraction

MLS_urban_3

  • Tree parameter extraction

MLS_urban_2

 

Such steps, in combination with code optimization are expected to be sufficient to reach the final goal of automatized estimation of features sampled by mobile mapping at a rate that matches the acquisition speed and at a quality that matches the result of a human operator.

×