«

»

The ‘digital dream’ to make the heritage of the region more accessible.

The walls of Ávila, the aqueduct of Segovia and Schoolyard of Salamanca undergo a virtual accessibility project designed by Polytechnic School of Ávila.

digital dreamThe walls of Ávila, the aqueduct of Segovia, the Roman city of Clunia in Burgos and Schoolyard of the University of Salamanca will no longer be inaccessible heritage assets for people with disabilities through the work of TIDOP – Information Technologies for the Heritage Documentation – Polytechnic School of Ávila, attached to the University of Salamanca, and a virtual accessibility in 3D project from a technology that has dubbed “The digital dream”.
The group where working on the ‘Sv3Dvisión’ initiative for five years and they presented it in Salamanca under the Virtual Reality and Leisure Fair, organized by the Recovery Center for Persons with Physical Disabilities (CRMF). It uses digital cameras, a laser scanner with a 350 meter beam and a panoramic camera from which capture “impossible views” to digitize and make virtually accessible the most important heritage of Castilla and León, said Diego González Aguilera, one of the members of TIDOP.
Thanks to the combination of these three sensors not only get the 3D reconstruction outside the monuments or archaeological sites, they also make a “radiography of their structure to see the skeleton of the monument” and get measurements that are useful for experts enabling them to know details that, in the case of the walls of Avila, goes from the height of the monument, the size of the stones through the width of the battlement.

In addition, the project is also designed to ‘navigate’ through the assets, even reaching to areas restricted for general public access – Las Caldas cave (Oviedo) – incorporate elements that once existed but now gone – Celt caves in the Castro of Cogotas (Ávila) and roman City of Clunia (Burgos) – and even get information on anything that is within a construction – Romanic Church of San Pedro of Ávila- from a frame to the temple belfry . Part of the assets addressed by the TIDOP Group is accessible via the internet address www.usal.es/imap3d

Without barriers

González Aguilera explained that thanks to technology baptized ‘The digital dream’ is achieved both overcome architectural barriers, such as geographical and temporal plus spatial and protection barriers, linked to limited access to the monuments.
In the case of architectural barriers, professor of the Polytechnic School of Ávila said that thanks to the technology used and through the images taken from air and land are reconstructed in 3D the most important monuments and made them accessible through Internet, including information in text format in its most significant elements to which the user can access only clicking the mouse.
As stated, ‘The digital dream’ also overcomes geographical barriers in the case of inaccessible constructions or deposits such as the Ulaca castro (Ávila) whose contemplation requires walking up for 20 minutes for the mountain- and also jump barriers temporary. So, he referred to the work in archaeological sites and findings of human remains, which surveys are conducted and finally capped.
In this way, he highlighted the work done by the Group in Jewish tanneries of San Segundo (Ávila) and the Roman town of “San Pedro del Arroyo”, where an iconic mosaic and several rooms was found that, as in the tanneries, were excavated and then covered to prevent spoliation. However, they can be visited thanks to its 3D reconstruction.
As for overcoming spatial barriers, Diego González Aguilera insisted that the work is useful for both people with disabilities and for those that are not, because thanks to the installation of a camera to “remote sites” -at 70 meters of high- is achieved to generate “impossible views” of the monuments that would be impossible to access with conventional technology. It is the case of the work done in the Cloister of Silence monastery of Santo Tomás in Ávila, where visitors can “dive” and see the “skeleton” of the monument.
The professor of the Polytechnic of Ávila added that the designed system facilitates also omit the called “protective barriers” which are those that exist on Palaeolithic and prehistoric caves to which the public has restricted access. This technology allows to do a replica of them and document corners to which man has not yet come. This is the case of Las Caldas cave in Asturias, where entry is prohibited and thanks to the laser scanner is accessed to galleries where the prehistorian has not arrived yet, he said.
González Aguilera emphasized the positive reaction of the disabled people after the project presentation. As stated, the Virtual Reality Fair provided a framework for presenting new techniques to operate a computer without a mouse,with the eyes, depending on the blink, “very interesting technological devices for people with a high degree of disability.” From their point of view, the result of the combination of both technologies “can be tremendous.”

Almost all Ávila

About the work of the TIDOP Group – Javier Gómez Lahoz, Ángel Luís Muñoz Nieto, Jesús Sabas Herrero and Diego González Aguilera, in the last years and thanks to an important part of final year projects, they have touched heritage assets of almost all the provinces of “Castilla y Leon”
While ” Ávila is almost completely digitized ” in Burgos has been digitized the Roman City and the Clunia theater and in Salamanca the schoolyard and Little Schools. Currently they are working on the aqueduct of Segovia and several chapels in the province. Regarding future projects, the group has received offers to work in part of the city wall and part of the Cathedral.

digital dream

×
Análisis termográfico de edificios

 

El uso de la termografía infrarroja comMapaEnergeticoo técnica sobradamente provada para la inspección de edificios y localización de patologías como fugas de aire, humedades, etc. Nos permite realizar un examen visual “in-situ” de calidad de los objetos de estudio gracias a la posibilidad de visualizar en tiempo real los resultados pudiendo detectar sin dificultad los desperfectos o elementos característicos de estos. Estas técnicas de medición cualitativa nos proporcionan la posibilidad de realizar inspecciones rápidas y eficaces sin contacto directo con el objeto y de forma no destructiva, lo que disminuye tanto el riesgo de incidentes para los operarios como los daños producidos en los propios objetos de estudio ocasionados por otras técnicas intrusivas. Además, también se ha demostrado la utilidad de la termografía infrarroja como técnica puramente de medida a través de su utilización para el cálculo de propiedades termofísicas de materiales tales como difusividad y transmitancia térmica.

En el caso de termografía cualitativa, las publicaciones existentes tratan de estudios realizados in-situ, principalmente en edificios históricos o elementos del patrimonio cultural, mientras que los estudios cualitativos se realizan, en la mayor parte de los casos, en laboratorios sobre muestras de tamaño limitado. En aquellos casos en los que se han realizado estudios termográficos cuantitativos sobre edificios in-situ, los valores de temperatura son empleados con el objetivo de obtener propiedades termofísicas (conductancia térmica) reales del cerramiento, sin embargo su distribución espacial no es considerada.

Conjugar ambas aplicaciones permitirá la automatización del cálculo de pérdidas de calor a partir de las temperaturas medidas con una cámara termográfica. De este modo, no solo se usa la termografía para representar el estado de la pared, sino que también se usan los valores de temperatura contenidos en la termografía para la extracción de parámetros métricos del edificio en estudio, por lo que la hibridación de la información termográfica con el material cartográfico de precisión permitiría extraer la geometría real del objeto de estudio con textura termográfica, pudiendo así realizar mediciones precisas de los elementos de interés directamente sobre el resultado obtenido.

 

20140220-usal-ensmart-panoramica-728

 

Estudios como el publicado por EuroACE en 2010 colocan la mejora de la eficiencia energética en edificación en cabeza de las acciones necesarias para la reducción de emisiones de gases del efecto invernadero y gasto energético, así como para servir de empuje a la generación de empleo. Especial es el caso del parque de edificios ya construidos, la mayoría procedente de los años 1940-80, con normativa inexistente y recursos escasos. En ellos las obras de rehabilitación energética pueden suponer un ahorro de hasta el 75% en consumo de energía. En España existen 13 millones de viviendas susceptibles de intervención, cuya rehabilitación energética supondría una reducción de las emisiones del sector del 34% con respecto al año 2001.

×
Building thermographic analysis

 

 

The use of infraMapaEnergeticored thermography as a widely tested technique for building inspection and location of pathologies such as air leakage and moisture allows the performance of  quality “in-situ” visual examination of the objects under study due to the possibility of obtaining real-time results, being able to detect without difficulty damages or material characteristics. This qualitative measurement technique provides the capability of doing quick, effective and non-destructive inspection without direct contact with the object under study, decreasing the risk of incidents to operators and the damage of the objects comparing with other intrusive techniques. Furthermore, the utility of infrared thermography as a measurement technique has been proved by its use for the determination of the thermophysical properties of materials such as diffusivity and thermal transmittance.

In the qualitative approach, some authors have performed in-situ studies, mainly in historical buildings or cultural heritage elements, whereas quantitative studies are performed mainly in laboratories with limited size samples. In those cases where quantitative thermography studies were performed in-situ, temperature values were employed in order to obtain the real thermophysical properties (thermal conductance) of the building envelope, but their spatial distribution is not considered.

Combine both applications will enable the automation of the heat loss computation from the measured temperatures with a thermographic camera. Thus, the thermography is not only used to represent the state of the wall, but also temperature values represented on the thermography for extracting the metric parameters of the study object so the hybridization of the thermographic information with precise cartographic material would  allow to extract the actual geometry of the object of study with thermal texture, being able to make accurate measurements of the elements of interest directly on the obtained results.

 

20140220-usal-ensmart-panoramica-728

 

Studies such as the one published by EuroACE in 2010, places improved energy efficiency in building construction at the top of the list of actions that need to be taken to reduce greenhouse gases and energy costs, in addition to acting as a stimulus to generate employment. In particular is the case of existing buildings stock, most of which dates back to the period 1940-80, constructed using non-existent standards and scarce resources. Here, energy refurbishment works could represent a saving of up to 75% in energy consumption. In Spain there are 13 million homes that could be the subject of intervention, where energy refurbishment could result in a reduction in sector emissions of 34% compared to 2001.

 

×
×
Ventana modal ingles
×
Ventana modal español
×
Mobile Laser System (MLS) applied to urban tree inventory

In urbanized Western Europe trees are considered an important component of the built-up environment. This also means that there is an increasing demand for tree inventories. Laser mobile mapping systems provide an efficient and accurate way to sample the 3D road surrounding including notable roadside trees. In this research line, a processing chain aiming at the extraction of tree locations and tree sizes from laser mobile mapping data is reached.

  • Vegetation extraction

MLS_urban_3

  • Tree parameter extraction

MLS_urban_2

 

Such steps, in combination with code optimization are expected to be sufficient to reach the final goal of automatized estimation of features sampled by mobile mapping at a rate that matches the acquisition speed and at a quality that matches the result of a human operator.

×